Category: biotechnology

What’s Your Bio Strategy? First Review from Life Science Leader

Life Science Leader reviews What's Your Bio Strategy

Life Science Leader’s editor Rob Wright posted a very positive review of What’s Your Bio Strategy?

Says Rob:

Today we stand on the precipice overlooking a new frontier — the century of biology, and businesses of all kinds need to be prepared to not only embrace what is coming, but have a strategy for how to leverage biology for the betterment of their businesses and the good of the planet.

He continues:

When I finally had the opportunity to sit down and read it, my … mind … was … blown. Because though the authors interview 25 innovators about how biology is presently impacting a variety of industries, as well as what they think could happen in the very near future, it is even more telling to ponder what they haven’t thought of as being possible, which I found myself doing while reading. As I came across company names (pay attention to highlights) I pondered which might soon rival one of the three “As” of internet commerce (i.e., Alibaba, Alphabet [formerly Google], and Amazon) which have a combined value of about $1.6 trillion. The book discusses concepts such as using DNA for data storage or how the future of fashion may reside in garments being grown in vats (i.e., biofabrication) not woven on looms.

To read the full review, click here.

The is now on sale. Pick up a copy at Amazon. In the meantime, subscribe to our newsletter here.

What Is Bio Strategy?

TL;DR. Bio strategy is a framework to incorporate biology, biotechnology into your business.

“At the dawn of the 21st Century, strategy seems to have gone out of fashion.” – Chet Holmes, Certain to Win

The word “strategy” has become so overused that most people have forgotten what strategy really means.

John Cumbers and I were inspired to write What’s Your Bio Strategy? because it was clear that few businesses understood the impact that biology was having – even among those who could benefit from the technologies. After all, the phrase “knowledge is power,” is commonly attributed to Francis Bacon, the father of the scientific method and visionary for the first scientific institution, the Royal Society of London for Improving Natural Knowledge.

So before we define bio strategy, let’s review the definitions of strategy.

Strategy defines your destination, not the road to get there.

Strategy is a guiding framework.

Strategy, according to Kenichi Ohmrae of McKinsey’s Toyko office, “isn’t about beating the competition. It’s serving customers’ real needs.

Harvard Business School professor Gary Pisano says,

“Strategy is nothing more than a commitment to a set of coherent, mutually reinforcing policies aimed at achieving a specific competitive goal. Good strategies promote alignment among diverse groups in an organization, clarify objectives and priorities, and help focus efforts around them.”

Martin Reeves, the managing director of Boston Consulting Group’s New York office and author of Your Strategy Needs a Strategy, suggests, all companies are identical to biological species in that both are complex adaptive systems. Therefore, the strategies that confer the ability to survive and thrive under rapidly changing conditions, whether natural or manmade, are directly applicable to business.

Bio strategy is a framework for incorporating biology into your business.

It is a plan to incorporate biology into your company’s existing mission, vision, and goals.

To find out more about What’s Your Bio Strategy? subscribe here.

First Drafts: The Ugly, The Bad and The Good

Writing first drafts sucks.

For the past few months, I’ve been co-writing What’s Your Bio Strategy? with SynBioBeta founder John CumbersWe just completed the first draft. It feels monumental.

The process of writing a first draft is an epic like Sergio Leone’s classic spaghetti Western The Good, The Bad and The Ugly – one of my all-time favorite movies.

The Ugly

In the movie, Eli Wallach plays Tuco. A vicious criminal who will double-cross his partners at the drop of a hat. He’s eager for revenge and enjoys mocking and insulting his adversaries. He represents “The Ugly.”

Tuco made famous the phrase,

“There are two kinds of people in this world.”

And there are two kinds of people in this world: Those who have ideas for books and those who write the books.

Writing that first draft is Ugly.

John and I spent six months outlining What’s Your Bio Strategy? We formulated questions. We drafted lists of people to interview. We discussed and argued over business strategy books, articles, and methods. We got feedback from agents and publishers, friends and colleagues.

Once we started the interviews and the writing, I had a lot of doubts. There’s a little voice that loves to say, “Why are you writing this? It’s not very good.” I can usually avoid this with my business writing by delivering outlines, getting feedback, and keeping my clients involved in the process.

Eventually, I gave that voice to an ex-boss. Every time he appeared, I would say “Shut up. I’m writing the book and you’re not.” 

Also Ugly: I had a very unexpected health issue. I woke up one morning with double vision. I went to the emergency department, spent a night in the hospital. I underwent months of tests. The diagnosis? The auto-immune disease myasthenia gravis. I had to wear an eye patch for two months and am still on medication. 

The Bad 

In the movie, Lee Van Cleef plays “Angel Eyes” a ruthless, cold-blooded, sadistic psychopath. He takes pleasure in carrying out assasinations and “always gets the job done.”

Writing takes up all your time.

For us, the Bad took the form of schedules and travel. John and I were always on the road. In fact, John circled the globe during the writing. He traveled to Borneo, Germany, Denmark, London, San Diego and Singapore. My own travels to Basel, Boston, Los Angeles and Montreal look feeble compared to John’s. Without Skype and GoogleDocs, there would be no first draft.

That travel had an impact on interviews – we couldn’t schedule everyone. It required massive coordination. We couldn’t have done it without SynBioBeta’s Kristin Sorrentino, Claire Besino, and Marianna Limas.

Plus, both us of run our own business. For me that means business development and execution – often writing for clients. John joined the venture fund DCVC and launched a seed fund – that required a significant time commitment.

We both have families. During the writing, my son Alejandro went through the college application process, was accepted to Cornell, and graduated high school. My youngest graduated fifth grade.

I am a disciplined writer but to make word counts and deadlines, I got in the habit of waking at 4:30. Every time one of us missed a deadline, the other would call or send an email or text.

In the end, we got the job done and didn’t have to resort to being cold-blooded, sadistic psychopaths. There were a few times that we both had to be driven and ruthless.

The Good

In the movie, Clint Eastwood plays “Blondie, The Man With No Name.” He had made this character famous in A Fistful of Dollars and For a Few Dollars More.

He is calm, calculating, merciless, and keeps his eye on the prize – a coffin full of gold.

The time we invested in our outline and the book planning paid off. It made a huge difference. It made it easier to stay focused.

As the first draft started to come together, we made significant changes to the structure and flow. Those made the draft stronger. Without the planning, the book would’ve been a bowl of (western) spaghetti.

The people we interviewed were the Good. Every time we would end an interview, we would call each other to high-five virtually. We now share deeper insights into the field of synthetic biology and are happy to share them with you.

Having a co-writer was excellent. Writing is lonely business. It can be isolating. Having someone to speak with, someone to crack the whip on deadlines, accelerated the writing. Plus, we came up with a novel idea that we think is going to be big – Biology as a Service – and James Hallihan of Cambridge Consultants spoke to us about the concept of the Chief Biology Officer.

Finally, the best of the Good is completing the epic first draft. By time you read this, we’ll probably be on the twelfth or twentieth draft. But there is nothing more satisfying than sharing a drink – even if it’s via Skype – when you finally know the first draft is finished.

Tim Gardner: “There Is Almost No Physical Problem That Can’t Be Solved With Biology”​

I’m co-author of a book called What’s Your Biostrategy? With SynBioBeta’s John Cumbers, we’re writing about the impact of biotechnology on ALL business. Over the next few months, I’m going to publish interview summaries from the book. For more information, scroll to the bottom of the post.

In 2000, Tim Gardner wrote one of synthetic biology’s seminal papers: Construction of a Genetic Toggle Switch in Escherchia Coli. At Amyris he led the engineering of yeast strains and pioneered process technologies for the large-scale bio-manufacturing of renewable chemicals. He founded Riffyn to create tools to accelerate innovation in research and development. My co-author John Cumbers and I interviewed Tim for What’s Your Bio Strategy? Here’s a few excerpts from the interview:

“To increase the size of the bio-based economy, we need to reduce the cost of developing bio-based products that would have been made from petroleum and chemistry. If we can do that, then developing more specialized products will be acceptable. We’ll stop searching for billion dollar blockbusters. We’ll have more entrepreneurial successes and investors will be happy because we’re delivering on the promises of the bio-based economy.”

[“At Riffyn, our] thesis is that the solution to faster, better, cheaper drugs, and faster, better, cheaper bio-based products is the predictability of information. It’s about integrating information to make better, informed decisions. It’s not necessarily about fancy robots or magical tools.”

“Engineering has more science in it than people realize.”

“The idea that scientists are being paid more or are delivering more value or are in greater demand is not entirely true. It’s hard to hire engineers.”

“Value tends to accrue to people and organizations that can reduce uncertainty.”

“There are organisms that can detect light or transform electricity into energy for survival. Muscles are incredibly efficient compared to the hydraulics or batteries that you might put into a robot. If we want to use those properties to make the world a more efficient, higher performing, more enjoyable place, then we need to learn how to learn from nature.”

Want to read the full interview? Visit What’s Your Bio Strategy?

iGEM is the Future of Biotechnology

Jennifer Lopez and Zachary Quinto.

Biotech is going mainstream in a big way.

That was the message to the more than 5,600 high school and college students crowded into Boston’s Hynes Convention Center for the 2016 International Genetically Engineered Machine (iGEM) competition.

Lopez’s production company is producing CRISPR, a near-future crime drama named after the gene-editing tool that Science Magazine dubbed 2015’s Breakthrough of the Year.

Quinto, star of Heroes and the Star Trek-reboot, is producing and starring in BioPunk, a drama based on the book of the same name. It explores the world of DIY-scientists and garage biohackers.

Standing in front of the crowd, FBI Supervisory Special Agent Ed You pointed out that, unfortunately, Lopez’ and Quinto’s shows will likely continue Hollywood’s long-standing war against science – a disservice to young people worldwide who might consider careers as scientists [1].

That disservice, he said, also presents a great responsibility to the students in the audience. Those students and the iGEM alumni that number in the thousands spread widely around the globe still are, according to Stanford synthetic biologist, Drew Endy, “one in a million. And that isn’t enough.”

Unexpected applications of biotechnology today

A biological material that can absorb uranium.

Plants that generate electricity.

Proteins engineered to respond to sound.

These were a few of the synthetic biology applications created by the nearly 300 teams that traveled to iGEM from as far as South Africa, Pakistan, China and Australia, as well as from universities across the European Union and the United States.

In 2009, I had been told that if I wanted to see the future of biotechnology, I needed to attend iGEM. It’s where kids develop biological solutions that use functioning bits of genetic information (BioBricks) to solve real-world problems. Sometimes those solutions are audacious and function. Often, they do not.

Students learn how to think and work like scientists. They must engage their communities. This is an important way to expose kids to the Biotech Century.

Over the summer, my son, Alejandro joined the GenSpace iGEM team. The Brooklyn team would be competing in the overgraduate category as team members ranged in age from high school juniors to grad students.

Since I write about the rapid advance of life science technologies, I was interested in how the young scientists participating in iGEM would tell their stories. I also wondered what storytellers could learn from the competition.

Here are a few of the things that I learned.

Standing on the shoulders of giants.

The term “synthetic biology” is more than a hundred years old, but published pieces discussing the creation of biological circuits date only to 2000. Modern biotechnology is not even fifty years old.  

iGEM is now twelve years old. From the beginning, it has given students the opportunity to leverage all of biotechnology’s history, as well as synthetic biology’s recent history of applying engineering and design principles to biology.

What iGEM doesn’t give is design constraints.[3]

It gives them BioBricks – interchangeable standard biological parts, pieces of DNA, the computer code of life, that have been developed to build biological systems in living cells.

Most of the students working with the BioBricks probably don’t understand the molecular details of those parts – they don’t need to. They understand that the Bricks are like Legos and can be combined, arranged, recombined and rearranged in seemingly infinite ways. That simplifies the process of design and construction.

Many of those standard biological parts were created or characterized by previous iGEM teams. So, each competition can build upon the previous years’ and contribute the new parts they create to the registry that in turn will be used by future teams.

For example, Team Peking, the 2016 team behind the new biomaterial designed to absorb uranium, constructed a library of parts that they submitted to the BioBricks Foundation. They also offered experimental materials to other Chinese teams.

This is the way that science is practiced in the real world:

Science as a collaborative sport.

Over and over again, iGEM teams referenced the parts they used, as well as the other teams they asked for advice and advised.

Collaboration is considered an essential skill in the 21st century as it promotes the type of deep learning needed to identify and promote complex problems. Nearly every team I saw on stage was gender diverse and depended on older mentors.

Team GenSpace 2016

For example, the  team from Brooklyn’s community lab Genspace consisted of high school, college, and graduate students. They were mentored by a biotech entrepreneur, a microbiologist, and biologist. There were 11 people onstage, plus their mentor in a tardigrade costume.

As part of the competition, all teams were questioned by a panel of judges comprising experienced academics and professionals. The questions asked were often difficult for the teams to answer. If the team pushed up against the limits of biosafety, the judges asked how risks were minimized.

Many teams also faced the additional challenge of having English as a second language. I watched teams struggle, passing the microphone, as they discussed the answer among themselves, until one team member felt confident enough to address the judges.

Sharing information dispels myths

One of the many teams from Mexico pointed out that 65% of Mexicans believe in magic.

(If you think that’s odd, remember that mistrust of science runs deep in the U.S. and has resulted in a surge of anti-vaccine sentiment and a government that wants to shut down most basic research-funding institutions. In the European Union, fears of genetic engineering have resulted in stringent controls on the use and growth of genetically modified crops, which have in turn prevented their adoption in many African countries where such crops could help feed a hungry population.)

To participate in the competition, iGEM teams are required to engage their local community in Human Practices: the study of how your work affects the world and the world affects your work.

Team Peshawar, the first ever iGEM team from Pakistan, traveled across their country visiting schools and college, running a roadshow to engage and educate as many people as they could about synthetic biology. They developed BioBrick trading cards for younger children and were featured on national television, in national newspapers, and on one international biotech web site.

The team, like many others, wrote a policy paper for the Pakistani government. The paper contained recommendations for the development of synthetic biology in Pakistan, as well as its impact on science and education and the economy.

As a storyteller, I found this one of the most important parts of being in iGEM:

You’re telling non-scientists about an important field that is rapidly growing and is quickly impacting all of our lives.

In his book Regenesis, Harvard genetics professor George Church wrote of iGEM,

“Some of the world’s most imaginative, significant, and potentially even the most powerful biological structures and devices [are] now coming not from biotech firms or from giant pharmaceutical companies, but from the ranks of university, college, and even secondary school students who were doing it mainly in the spirit of advanced educational recreation.”

Synthetic biology pioneer George Church mobbed at iGEM 2016

When Professor Church visited iGEM this year, he was mobbed by students, following around like a rockstar. iGEMers have heroes, and those heroes are real scientists.

Let’s hope Lopez and Quinto follow iGEM’s lead by showing scientists are not crazy loners inspired to destroy world, but real people solving real problems by sharing information, collaborating, and dispelling myths.

#

[1] Especially considering STEM jobs are growing three-times faster and pay 26 percent more than non-STEM jobs [U.S. Department of Commerce].

[2] My high school senior was on the GenSpace team. They took the Overgraduate Award for measurement.

[3] The BioDesign Challenge, started this past year, offers art and design students the opportunity to envision future applications of biology. While the entries in the first year’s competition were more abstract than those at iGEM, students again, are not constrained by convention and could let their imaginations run wild.

[Thanks to Erum Azeez-Khan, Nat Connors, John Cumbers, Kristin Ellis, John Garrison, and Susan Rensberger for reading early drafts of this.]

 

Career Advice to a Molecular Biologist Starting to Write

If you want to write, you need to write.

Write and write some more.

Read the science media.

Fill your head with the best writing you can find. Read The New Yorker. Read annual anthologies of the best writing — not just science writing either. Here’s The Best American Essays of 2016.

Practice generating ideas on what to write every day. Especially after you read a science story and some really great writing that isn’t science. Look for ways to combine ideas.

Start a blog to demonstrate your writing skills.

Then guest post on blogs that are in your topic area. Start developing the relationship with those bloggers as soon as you start writing your own content.

Find the publications that you want to write or work for.

Follow the writers and editors on Twitter, Facebook, and Quora.

Develop relationships with them. Be transparent. Tell them you want to write for them. Ask them questions.

After you’ve developed those relationships, start pitching ideas. Pitch them lots of ideas.

Don’t have any expectations.

Remember, like writing, getting a job in writing is a process. The more you work on pitching, the luckier you’ll get. The more you write, the luckier you’ll get.

Remember that if you’re going to make a living as a writer, there are a lot more opportunities writing for companies. You can carve out a very nice niche writing for life sciences companies.

I don’t work in the media but work with and speak to people at publications regularly and I know there aren’t enough science-trained writers.

I wish someone would’ve given me this advice when I was starting out. It took me 10 years to figure it out.

Here’s my original answer.